Infogoal Logo
GOAL DIRECTED LEARNING
Master DW

Data and Analytics Tutorial

Data and Analytics Overview
Under Construction

Data and Analytics Success

Data and Analytics Strategy
Project Management
Data Analytics Methodology
Quick Wins
Data Science Methodology

Requirements

BI Requirements Workshop

Architecture and Design

Architecture Patterns
Technical Architecture
Data Attributes
Data Modeling Basics
Dimensional Data Models

Enterprise Information Management

Data Governance
Metadata
Data Quality

Data Stores and Structures

Data Sources
Database Choices
Big Data
Atomic Warehouse
Dimensional Warehouse
Logical Data Warehouse
Data Lake
Operational Datastore (ODS)
Data Vault
Data Science Sandbox
Flat Files Data
Graph Databases
Time Series Data

Data Integration

Data Pipeline
Change Data Capture
Extract Transform Load
ETL Tool Selection
Data Warehoouse Automation
Data Wrangling
Data Science Workflow

BI and Data Visualization

BI - Business Intelligence
Data Viaulization

Data Science

Statistics
Descriptive Analytics
Predictive Analytics
Prescriptive Analytics

Test and Deploy

Testing
Security Architecture
Desaster Recovery
Rollout
Sustaining DW/BI

Metadata for Data and Analytics

Metadata is one of the important keys to the success of the data and analytics effort.  Metadata management answers these questions:

What is Metadata?

Metadata is your control panel to the data warehouse.  It is data that describes the data and analytics system:

Metadata is often used to control the handling of data and describes:

The power of metadata is that enables data warehousing personnel to develop and control the system without writing code in languages such as: Java, C# or Python.  This saves time and money both in the initial set up and on going management.

Data and Analytics Metadata

Data and Analytics has specific metadata requirements.  Metadata that describes tables typically includes:

Metadata describes columns within tables:

How can Data and Analytics Metadata be Managed?

data and analytics metadata is best managed through a combination of people, process and tools.

The people side requires that people be trained in the importance and use of metadata.  They need to understand how and when to use tools as well as the benefits to be gained through metadata.

The process side incorporates metadata management into the data and analytics life cycle.  As the life cycle progresses metadata is entered into the appropriate tool and stored in a metadata repository for further use.

Metadata can be managed through individual tools:

Metadata Manager / Repository

Metadata can be managed through a shared repository that combines information from multiple sources.

Metadata Manager for Data Warehousing

The metadata manager can be purchased as a software package or built as "home grown" system.  Many organizations start with a spreadsheet containing data definitions and then grow to a more sophisticated approach.

Extracting Metadata from Input Sources

Metadata can be obtained through a manual process of keying in metadata or through automated processes. Scanners can extract metadata from text such as SQL DDL or COBOL programs. Other tools can directly access metadata through SQL catalogs and other metadata sources.

Picking the appropriate metadata extract tools is a key part of metadata management.

Many data modeling tools include a metadata extract capability - otherwise known as "reverse engineering".  Through this tool, database information about tables and columns can be extracted.  The information can then be exported from the data modeling tool to the metadata manager.


Advertisements

Advertisements:
 


Infogoal.com is organized to help you gain mastery.
Examples may be simplified to facilitate learning.
Content is reviewed for errors but is not warranted to be 100% correct.
In order to use this site, you must read and agree to the terms of use, privacy policy and cookie policy.
Copyright 2006-2020 by Infogoal, LLC. All Rights Reserved.

Infogoal Logo